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1. INTRODUCTION

It is becoming increasingly evident that traditional and especially deterministic methods will
not be sufficient to properly design advanced structures or structural components subjected to a
variety of complex, and cyclic loading conditions. Due to uncertainty in loading conditions,
material behavior, geometric configuration, and supports, the stochastic computational mechanics,
which accounts for all these uncertain aspects, has to be applied to provide rational reliability

analysis and to describe the behavior of the structure. The fundamentals of stochastic
computational mechanics and its application to the analysis of uncertain structural systems are
summarized and recapitulated in the book (Liu and Belytschko, 1989).

While the theory of statistics and structural reliability has been used successfully in

modeling the uncertain nature of structures, load environments, and in computing the probability of
failure, its application is only limited in simple structures with linear constitutive behavior. Due to
the complexity in the geometry, external loads, and nonlinear material behavior, more advanced
computational tools such as Finite Element Methods (FEMs) or Boundary Integral Equation
Methods (BIEMs), have to be employed to provide the necessary computational framework for

analyzing structural response. The combination of these advanced computational tools with the
theory of statistics and structural reliability has become a rational wayfor the safety assessment and
uncertainty characterization of complex structures. [n-_his Chaptgr, _ttenuation is focused on the
development of Probabilistic Finite Element Method (PFEM), whiEh'combines the finite element
method with statistics and reliability methods, and its application to linear, nonlinear structural
mechanics problems and fracture mechanics problems. The novel computational tool based on the
Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear

fatigue crack growth.

The existing PFEM_ have been applied to solve for two types of problems: (1)
determination of the response uncertainty in terms of the means, variance and correlation
coefficients; (2) determination the probability of failure associated with prescribed limit states.-
Whilethe second order statistic moments of a response are not sufficient for a complete reliability -

analysis, these moments offer useful statistical information and serve as a measures of reliability.
Furthermore, due to the lack of multivariate distribution function of random variables, a

meaningful risk assessment and failure analysis may not be feasible.

The perturbation method has been used extensively in developing PFEM due to its
simplicity and versatility. Cambou (1975) appears to have been the first to apply the first order

perturbation method for the finite element solution of linear static problems with loading and
system stochasticity. Baecher and Ingra (1981) also used the same techniques for settlements
predictions. The perturbation method in conjunction with finite element method has also been
adopted by Handa and Anderson (1981) for static problems of beam and frame structures, by Ishii
and Suzuki (1987) for slope stability reliability analysis, and by Righetti and Harrop-Williams
(1988) for static stress analysis for soils. The accuracy, convergence and computational efficiency

of the perturbation method have been compared with those from Neumann expansion method and
direct Monte Carlo Simulation (MCS) method (Shinozuka and Yamazaki, 1988; Shinozuka and

Deodatis, 1988). The PFEM based on the second-order perturbation approximation has been
introduced by Hisada and Nakagiri (1981 and 1985) for static problems and for eigenvalue

problems. ,-

Extensive research on the PFEM has been developed by the authors and their colleagues at

Northwestern University in the recent years. The PFEM based on the second-order perturbation has
been deyeloped to estimate the statistic moments of the response for linear static problems (Liu et al.,
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1986a),nonlineardynamicproblems(Liu et al., 1986b),andinelasticproblems(Liu et al., 1987).
The formulationbasedon the single-fieldvariational principle hasbeenextendedby Liu et al.
(1988a)to the three-fieldHu-Washizuvariational principle formulation, which has far greater
versatility. Thenumericalinstability resultingfrom theseculartermsin theperturbationhasbeen
removedby Liu et al. (1988b)basedon Fourfieranalysis. Theperturbationmethodshavebeen
shown to provide efficient and accurateresults for small randomfluctuations in the random
parameters.An extensivereviewon theapplicationof perturbationmethodsin developingPFEM
hasbeengivenby BenaroyaandRehak(1988).

The finite elementmethodcoupledwith theFirst andSecond-OrderReliability Methods
(FORM and SORM) hasbeendevelopedby Der Kiureghian and Ke (1985, 1988) for linear
structuralproblemsandLiu andDerKiureghian(1991)for geometricallynon-linearproblems.The
mostcritical stepin thismethodis thedevelopmentof anefficient searchalgorithmfor locatingthe
point at whichtheresponsesurfaceis to beexpandedin af'trstor secondorderTaylor series.This
pointis obtainedby aniterativeoptimizationalgorithm,which involvesrepeatedcomputationof the
limit statefunction and responsederivatives. Unlike the methodof direct differentiation (Der
KiureghianandKe, 1988;Liu andDer Kiureghian,1991;ZhangandDer Kiureghian, 1991),the
PFEMbasedon theperturbationapproximationin conjunctionwith FORM hasbeendevelopedby
Besterfieldet al (1990,1991)for thereliability analysisof brittle fractureandfatigue. In a slightly
different context,the PFEMhasbeendevelopedby Faravelli (1986, 1989)that couplesresponse
surfaceapproachwith deterministicfinite elementformulation. The finite elementsimulation
coupledwith thepolynomialresponsesurfacefitting hasbeenalsoproposedby Grigoriu (1982).
Usingadeterministicfinite elementcodeandfinitedifferences,anadvancedalgorithmbasedon the
FastProbabilityIntegration(FPI)hasbeendevelopedbyWu etal (1990)to generatetheentirepart
of theCumulativeDistributionFunction(CDF)of theresponse.Theperformanceof theFPI based
on either advancedmean-valuemethodor advancedmeanvalue first-order method hasbeen
demonstratedby Cruseet al. (1988)throughthereliability analysisof turbineblade.

In addition to the PFEM, the StochasticBoundaryElement Method (SBEM) hasbeen
developedand adoptedrecently by researchers.The SBEM that combinesthe deterministic
boundaryelementmethodwith perturbationexpansionshasbeendevelopedby Ettouneyet al.
(1989)andDasgupta(1992)for thedeterminationof thestatisticmomentsof bothdisplacementsand
tractions. Most recently, the authorshavedevelopedthe SBEM, which combines the mixed
boundaryintegralequation method(Lua et al., 1992c)with FORM, for the studyof probabilistic
fatiguecrackgrowth(Luaet al., 1992d).

This Chapter presentsan overview of the PFEM developedby the authors and their
colleaguesin therecentyears. Theprimaryfocusis placedon thedevelopmentof PFEM for both
structuralmechanicsproblemsandfracturemechanicsproblems.Theperturbationtechniquesare
usedasmajor tools for the analyticalderivation. The remainderof this Chapteris organizedas
follows. In Section2, the representationanddiscretizationof randomfields arepresented.The
developmentof PFEMfor thegenerallineartransientproblemandnonlinearelasticity usingHu-
Washizuvariationalprinciplearegivenin Section3,and4, respectively.Thecomputationalaspects
arediscussedin Section5. Theapplicationof PFEMto thereliabilityanalysisof bothbrittle fracture
and fatigue is given in Section 6. A novel stochasticcomputational tool basedon SBEM is
presentedin Section7. Thefinal conclusionsaredrawnin Section8.

2. RANDOM FIELD DISCRETIZATION

2.1Background

Therandomnessof astochasticsystemcanbedescribedin threeforms,randomvariables,
randomprocessin space,andrandomprocessin time. Therandomprocessin spaceis alsocalled



randomfield. Theaspectsof randomfieldsandits applicationto engineeringproblemsaregiven
byVanmarcke(1984). Variousmethodshavebeenusedto thenumericalrepresentationof random
processes.Thestatisticalcharacterizationfor thunderstormwindshasbeengivenby Twisdaleand
Dunn(I983) andTwisdaleandVickery (1991). Thespectralrepresentationof randomprocesses
basedoncomputersimulationhasbeenproposedby Shinozuka(1987).

Thespatialvariabilityof mechanicalpropertiesof a systemandtheintensityof adistributed
loadcanconvenientlyberepresentedby meansof randomfields. Dueto thediscretenatureof the
finite elementformulation,therandomfield mustalsobediscretizedinto randomvariables.This
processis commonlyknownasrandomfield discretization.Variousmethodshavebeendeveloped
in therepresentationof randomfields. Theyare:themidpointmethod(HisadaandNakagiri, 1985;
Der KiureghianandKe, 1988;Yamazakiet al., 1988),thespatialaveragingmethod(Vanmarcke
andGrigoriu, 1983),andseriesexpansionmethod(Lawrence,1987;SpanosandGhanem,1988).
In this section,the interpolationmethod(Liu et al., 1986a)is described. In this method,the
randomfield is representedbya setof deterministicshapefunctionsandtherandomnodalvalues
of thefield. Thesizeof therandomfield elementis controlledbythecorrelationlengthof thefield
and the stability of the probability transformationusedin the reliability methods(FORM and
SORM). Therandomfield meshshouldbesofine to capturethefluctuationof therandomfield.
On theotherhand,the randomfield meshshouldnot besosmall that highcorrelatedstochastic
variablesof adjacentelementscausenumericalinstability in theprobability transformation,which
is required in the reliability methods(FORM and SORM). As suggestedby Der Kiureghian
(1985),two separatemeshesfor thefinite elementand for randomfields haveto beusedin the
numericalimplementation.

Sincethecomputational effect in the determination of response derivatives or sensitivities is
proportional to the number of random variables, it is desirable to use as few random variables as

possible to represent a random field. To achieve this goal, the transformation of the original
random variables into a set of uncorrelated random variables has been introduced by Liu et al.
(1986a) through an eigenvalue orthogonalization procedure. Comparison with a Monte-Carlo
simulation demonstrates that a few of these uncorrelated variables with larger eigenvalues are
sufficient for the accurate representation of the random field. This technique along with other
computational aspects is presented in Section 5.

2.2 Interpolation Method

Let b(x) represent the random field. In PFEM, b(x) is approximated by

b(x) = '_ Ni(x) b.
1

i=l
(2-1)

where Ni(x) represent the shape functions and b._ the discretized values of b(x) at x i, i = 1..... q.

It follows from Eq. (2-1) that

and

db(x) = _ Ni(x ) db. (2-2)
l

i= 1



where

db2(x) = _ Ni(x ) Nj(x) db. db.• . 1 j
l j= 1

(2-3)

db. = b.-b.
1 1 I

(2-4)

and b. represent the mean values of b. (also denoted by the expectation operator E[.]).
1 1

(2-1) the expectation and the covariance of b(x) are, by definition,

-.t.-OO

E[b(x)]= j b(x) f(b) db
-00

From Eq.

(2-5)

and

= _ Ni(x) E[b i]

i= 1

Cov[b(Xk), b(Xm)]=

4.o,o

f
.OO

[b(x k) - b(Xk) ] [b(Xm) - b(Xm) ] fib) db

(2-6)

(2-7)

_ Ni(Xk) Nj(Xm) Cov(b i , bj)

ij=l

(2-8)

respectively, where fib) is the multivariate probability density function; x k and x m

points in the domain of x.

are any two

From second-moment analysis, the mean of any function S[b(x),x] at any point x k and the

covariance of the function between any two points x k and Xm can be written as

and

1 _ _2Sk
E[Sk] -- Sk + 2 _ Cov(b i , bj) (2-9)

ij=l 1 j



where

CoV[Sk,Sm]=
ij=l

s k = S[b(x),xk]
(2-11)

and the superposed bar implies evaluation atb. The error in Eqs. (2-9) and (2-10) arises from: (i)
the truncation of higher order moments and (ii) the discretization of the random field b(x) by the
finite vector b. If the randomness in b(x) is small, then the first error will be small for a smooth

function and the second-moment analysis is applicable. The error due to discretization in Eqs. (2-

6) and (2-8) has been studied by Liu et al. (1987).

When the random field discretization is coupled with a FEM discretization, as in PFEM, q

need not be equal to the number of finite elements NUMEL and the shape function Ni(x) need not

be the same as the finite element interpolants for the displacement field. As indicated before, two

meshes, one depending on structural topology, the other on correlation length can be employed to
improve the computational efficiency.

3. PROBABILISTIC FINITE ELEMENTS FOR LINEAR PROBLEMS

The probabilistic finite element method (PFEM) is used to study of systems with parametric
uncertainties in both the unknown function and mathematical operators acting on it. The loads can
be either deterministic or random. In this section, the second-order perturbation is employed to

develop PFEM for a general linear transient problem. By applying the second-order perturbation,
the random linear system equations can be replaced by a finite number of identical deterministic
system equations up to second-order. The effective load in each of these equations depends on the
randomness of the system and the solutions of the all the lower order equations.

Due to the space limitation, the review on the deterministic finite element method is not
given here. The state-of-the-art of finite element techniques can be found in the review article by
Noor (1991). Using either the single field variational principle or Galerkin formulation, the

discretized linear equations of motion are

M a(b, t) + K(b) d(b, t) = f(b, t) (3-1)

where M and K(b) are the (neq × neq) global mass and stiffness matrices, respectively; a(b, t),

d(b, t), and fib, t) are the (neq x 1) nodal acceleration, displacement, and force vectors,

respectively; neq is the number of equations; and b is a q-dimensional discretized random variable

vector, i.e., b i = b(xi), where x.1 is the spatial coordinate vector. The mass is usually assumed to

be deterministic whereas the probabilistic distributions for the stiffness and external force are

represented by a generalized covariance matrix, Cov(b i, bj), i, j = 1..... q. It is worth noting that

the stiffness matrix can be expressed in terms of the generalized gradient matrix, B(x), and the
material response matrix, D(b, x). In this formulation, the random vector, b, can represent a



randommaterialproperty(e.g.,Young'smodulus)and/orarandomload.

The applicationof second-momentanalysisto developPFEM involves expandingall

randomfunctionsaboutthe meanvalueof therandomvectorb, denoted by b, via Taylor series

and retaining only terms up to second-order terms. That is, for a small parameter, 4, the random

displacement function d(b, t) is expanded about b via a second-order perturbation as follows:

1 ¢2 _ d- b b (t) Ab.Ab. (3-2)d(b,t) = d(t) + ¢ d-b.(t )Ab.l + 2 . . 1 j
i=l x ij=l 1 j

where d(t), db.(t), and db.b.(t) represent the mean displacement, the first-order variation of
l Ij

displacement with respect to b. evaluated at b, and the second-order variation of displacement with
1

respect to b. and b. evaluated at b, respectively and Ab. represents the first-order variation of b.
I J 1 I

about b.. In a similar manner, K(b), a(b, t), and f(b, t) are also expanded about b. via a second-
I I

order perturbation. Substitution of the second-order perturbations of the random function d(b, t),

K(b), a(b, t) and fib, t) into (3-I) and collecting terms of order i, ¢, and ¢2 yields the following

equations:

Zeroth-Order Equations

Ma(t) + Kd(t) = f(t)

First-Order Equations (for each Ab i, i= 1..... q)

(3-3)

where

Mab.(t) + K db.(t) = _'b.(d, t) (3-4)
1 1 1

Fb.(d, t) = lb.(t) - Kb. d(t) (3-5)
1 1 1

Second-Order Equations (i and j are summed from 1 to q)



where

Ma2(t) + Kd2(t) = F2(d,t)

1 - 1 - d(t)
F2(d, t) = { _ fb.b.(t) - _ Kb.b.

ij=l 1J Ij

a2(t ) _ _- _ ab.b.(t)Cov(b i, bj)

ij=l 13

Kb. db.(t) } C°v(bi' bj)
1 J

(3-6)

(3-7)

(3-8)

d2(t) - _ _ db.b.(t)Cov(bi, bj )

ij=l 1j

(3-9)

The solution process for Eqs. (3-3) through (3-9) can be performed in parallel since only one
effective stiffness matrix needs to be formed. Therefore, the total solution requires one
factorization of the effective stiffness matrix and q+2 forward reductions and back substitutions of

an (neq x neq) system of linear equations to obtain the zeroth-, first-, and second-order solutions.

To illustrate the performance of PFEM, a simple two degree of freedom spring-mass system

is presented here. The computed results are compared with those obtained using (1) Monte Carlo
Simulation (MCS) and (2) Hermite-Gauss Quadrature (HGQ) schemes. The problem is depicted

in Fig. 7-1. A sinusoidal vector forcing function is used:

0.0 ] (3-10)F(t) = 25.0 x 106 sin 2000 t

The random spring constants K l and K 2 are normally distributed with a coefficient of variation

(i.e. o'/#) equal to 0.05. The mean spring constants are 24 x 10 6 and 12 x 106, respectively. The
deterministic masses ml and m2 are 0.372 and 0.248, respectively. A stiffness-proportional

damping of 3% is included. The probabilistic equations derived earlier are solved by the implicit

Newmark-13 method (Ma, 1986). The mean amplitude dl is depicted in Fig. 7-2 for all the three
numerical methods-PFEM, HGQ and MCS. The PFEM solution compares very well with the

other two methods. For the variance of dl the PFEM solution, plotted in Fig. 7-3, seems to

overshoot the variance at large time. The +3or bounds for the displacement dl is plotted in Fig. 7-
4.

4. PROBABILISTIC FINITE ELEMENTS FOR NON-LINEAR PROBLEMS

The probabilistic finite element method has been developed in the previous section using the
single-filed variational principle. Due to the direct stiffness matrix approach used, it can be only
applied to solve a limited number of problems with uncertainty in loading and material properties.



In orderto consistentlyhandleproblemswith randomnessin theequilibrium equations,domain,
andboundaryconditions,the three-fieldHu-Washizuvariationalprinciple will beemployedto
developPFEM. An additionaladvantageof usingtheHu-Washizuvariationalprinciple involves
theeliminationof the locking phenomena(BelytschkoandBachrach,1986)and suppressionof
hourglassmodes (Belytschko et al., 1984). Solution of threestationary conditions for the
compatibilityrelation,constitutivelaw,andequilibriumyield thevariationsin displacement,strain
andstress.The statisticssuchasexpectation,autocovariance,andcorrelationof displacement,
strainandstressarethendetermined.

Using matrix notation, the Hu-WashizuVariational Principle (HWVP) for nonlinear
problemsadoptedin thisSectionis (seeLiu et al., 1988c)

5E (_-o) df_ - 50 (c-Vu) df2
f_ f_

f T+ 5(Vu) odf2 5u F dr2 - 5u h dF =0 (4-1)

_2 _ 0f2 h

where e, o, and u are independent random field variab'les representing the nonsymmetric measure

of the strain, first Piola-Kirchhoff stress, and displacement, respectively; _ is a nonlinear function

of the deformation gradient; and a superscript T represents the transpose. In Eq. (4-1): Q, 0f2 h,

F, h, and Vu represent the domain, traction boundary, body force vector, prescribed traction

vector, and the nonsymmetric part of the displacement gradient, respectively; 5 represents a virtual

quantity. The surface and volume integrals in Eq. (4-1) can be expressed via parametric

representation:

dF = J dA and dr2 = J dR (4-2)
S V

and J represent the surface and volume Jacobians, respectively; and R andrespectively, where Js v

A represent the reference domain and boundary, respectively. Random domains and boundaries
are incorporated into the formulation through randomness in the gradient operator and Jacobians.
The application of second-order perturbation techniques in the HWVP involves the expansion of all

random functions about the mean value of the random field b(x) denoted by b(x) and retaining

only up to second-order terms, i.e., for a given small parameter [4 = the scale of randomness in

b(x)], the random function gt is expanded about b at a given point x in the reference domain as
follows:

0 ' C0e ..... C0e ''W = V + _(_t + )+ 4 2(v +Ce + ) (4-3)

where the superscripts nought, prime, and double prime represent the random functions evaluated

at b, the first-order variation due to variations in b, and the second-order variation, respectively.

The first elasticity tensor, C in Eq. (4-3) is given by

l0



_32W

Cijkm = bGijaGkm (4-4)

where W is the strain energy density function; and G is the deformation gradient. Similarly, the
T

rest of raridom functions e, o, F, h, Js, Jv, Vu and 5(Vu) can also be expressed as second

order perturbations (see Liu et al., 1988a). After substituting the second order perturbations of all
these random functions into Eq.(4-1), the following three equations for the zeroth-, first-, and
second-order nonlinear PHWVP are obtained:

Zeroth-Order Variational Principle

RfSeT( 0_ 0) j0dR_RfSCT(E 0-V0u 0) J0dRv v

Rf_i(_r0u)T Rf T F0 0 Rfh T 0 j0

+ _50 j0 dR 5u J dR - 5u h dA =0 (4-5)

V V _. S

First-Order Variational Principle (_ terms)

_Se T ' ' ' ( 0 o0) _]
[(C0e -c5) j0 +_ j0 + _ J dR

v v

hf ' , V0u 0) 'T , 0u 0 j0 + (cO Jr] dR- 5_ [(_:-V Vu ) v "

[8(V0u)T ,::r°] 0u)T '
, , T j0+5(V o"0J } dR+ { cr + 5(V u) v v

T j0 F 0 T 0 h0
- 5u (F + Jv) dR - 5u (h J + J dA

v 0 s

=0 (4-6)

Second-Order Variational Principle ({2 terms)

KfSg T cOe .... j0 .... j0 C0E ' ' ' J'v (i0 Jv
- +(Ce+_) v+( +_" _) +( 0 "[( o') v - - ) ]dR

1.1



Rf ' ' , O, v'uO) ' (eo J'_]
T ,, 0 .... 0 j0 +(13 - _7 u - Jv + - V0u0) dR- 8G [(e -V u -Vu-V u ) v

V0u)T ,, , T , ,, T GO jO
+ {[8( G +8(Vu) G +8(V u) ] v

vOu)T , , T ,+ [(_( G +_(Vtl) G O] J
v

+ 5(_70U) T G O "
Jv } dR

Kf T "j0 ....
- 8u (F +F J +FOj )dR

v v v

Rfh T .... j'_

- 5u (h j0 + h J + h 0 ) dA = 0 (4-7)

s s

It should be noted that all random functions with the superscript C ) or (') in Eqs. (4-6)-(4-7) are,

in general, described through spatial expectation and autocovariance functions. Therefore, in
addition to the usual finite element approximation of the displacement field, the random fields are
also discretized with q shape functions. To be consistent with the finite element approximation and

to maintain the accuracy of the discretized random field [i.e,, b(x)], the random functions W, C, F,

h, Js' and Jv' which are, in general, functions of b(x) and x, are first discretized with the same q

shape functions as the random fields. For example, the finite element approximation of C is given

by

C0 v iiC = + _ C + _2C (4-8)

or

0I ' _2 "C = _i(x)( C + _CI+ CI) (4-9)
I=l

!

where; _i(x) are the q shape functions; C I denotes the Ith nodal value of C evaluated at b; C I

vl

denotes the first-order variation of C(x I, b) due to variations Abi; and C I denotes the second-order

variation. The last two are then expanded in terms of the random variables bi and given by

C I = (C Ab i
i=l

(4-10)

12



and

" 1 _ i')i j (4-11)CI - 2 (C Ab. Ab.1 j
ij=l

respectively. The factor 1/2 is included in order to be consistent with the second-order Taylor

series expansion. The nodal values (C?i and (CI)ij can be obtained by partial differentiation of C

or by a least-square fit to the actual data. Similar definitions can be developed for the rest of
random functions (see Liu et al., 1988a).

Substituting the given approximation of all random functions into the zero-order, first-
order, and second-order PHWVPs (Eqs. (4-5)-(4-7)), and using the three stationary conditions

(strain-displacement, stress-strain, and equilibrium), the zeroth, first and second order equations
can be obtained (see Liu et al., 1988a). The zeroth-order equations require an iterative solution
technique, but the first-order and second-order equation are linear. After determining the zeroth-,
first-, and second- order solutions, the expectations and autocovariance matrices for the

displacements, strains, and stresses can be obtained.
The applicability and effectiveness of the PFI_M for nonlinear problems was demonstrated

by Liu et al. (1988a) through the problem of a cantilever beam subjected to large deflection. The
Saint Venant-Kirchhoff model for nonlinear elasticity with randomness in the external force, beam

height, and material properties were considered. The probabilistic distribution for displacement,
strain and stress were also presented.

To reduce computational effort, the random variables can be transformed to the uncorrelated
normal form by an eigenvalue problem as shown below.

5. COMPUTATIONAL ASPECTS

5.1. Random Variable Transformation

The mean and covariance can be obtained from the equations in Section 4. However, the
number of derivatives to be evaluated is proportional to q(q+l)/2, where q is the number of
random variables. To reduce computations, an eigenvalue orthogonalization procedure, which is
similar to the modal analysis in structural dynamics, can be employed. The full covariance matrix

Cov(b i , bj) is transformed to a diagonal variance matrix Var (c i , cj) such that

Var (c i , cj) = 0 for i _j (5-1)

and

Var (c i , cj) = Var (ci)
for i = j (5-2)

Therefore, the number of evaluations is proportional to q. The above is achieved through the

eigenproblem:

f_ = WA (5-3)

13



wheretheEl and A matrices denote Cov(b i , bj) and Var (c i , cj), respectively; W is a constant q x

q fundamental matrix with the following properties:

T T
huu? = W W = I (5-4)

T
A = tt' f_ q-' (5-5)

and

T
b = _c or c = q" b (5-6)

I is the q x q identity matrix and c is the transformed q x 1 vector of random variables. Thus, the
discretized random vector b is transformed to an uncorrelated random vector c with the variance of

c as the eigenvalues of f_ in Eq. (5-3).
With Eqs. (5-5) and (5-6), the mixed derivatives appearing in Section 5 reduce to second

derivatives and Var (b i , bj) reduces to Var (ci). Thus, the mean of any function S[b(x), x] at any

point x k and the coveriance of the function between any two points xk and x m can be written as

= Var(ci) (5-7)
E[Sk] Sk + 2 i __Z-_I 3c 2

I

and

CoV[Sk,Sm] = . ._ t-_-i)t,,-_-i )Var(ci) (5-8)
l j= 1

respectively.
It is observed that for one-dimensional random fields, as the correlation length increases

from zero to a large value, the number of largest eigenvalues n, n < q necessary to evaluate the
mean and covariance in Eqs. (5-7) and (5-8) to a specified accuracy, decreases from q to 1. When
the correlation length is zero the random field is uncorrelated and all q eigenvalues are dominant.
As the field is uncorrelated, all q random variables are necessary to represent the randomness of the
field. As the correlation length increases the number of dominant eigenvalues decreases.

Eventually, for a very large correlation length the random field is closely correlated and there is just
one dominant eigenvalue. As the field is closely correlated, only one random variable,
corresponding to the largest eigenvalue, is sufficient to represent the randomness of the field. This
feature, when present, can easily be exploited to reduce the computations. The value of n can be
chosen based on the distribution of the eigenvalues before solving the PFEM equations. The

eigenvalues here can be interpreted as weighting factors for the corresponding mode shapes
necessary to represent the covariance structure; a large eigenvalue means a dominant mode and vice
versa. Results of the eigenvalue distribution and selection of n, for beam problem and a bar
problem, are discussed in Liu et al. (1986a, 1987).

5.2. Adjoint Method in PFEM

Consider a typical function 1-I(c, d) involving the displacements d and the random variables
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c. Chain differentiation yields

T I

[lq]c =I-I +H a d• C. C.
1 1 1

(5-9)

where the subscript denotes the derivative with respect to c., and
1

T

nd =( )
lId 1, IId2 ..... 1-IdNEQ

(5-IO)

Using the first-order equation of PFEM in the transformed space, i,e.,

I !

Kd. = f.
1 1

Eq. (5-9) becomes

(5-11)

T -1 '

[H]c. = Flc. + lid K fc, (5-12)
1 1 I

Usually, in the direct method, the above equation is evaluatedfor each random van_able c i,

involving 'n' solutions of the linear equation (5-12). In the adjoint method, X is selected to satisfy

KE = IId (5-13)

Then, Eq. (5-12) can be rewritten as

T !

= l-I +X f (5-14)[l-I]c. c. c.
1 1 1

The adjoint problem, Eq. (5-13), is solved only once in this method. In the direct method, 'n'
solutions of Eq. (5-11) are required. This is the advantage of the adjoint method over the direct

I

method. Both methods require 'n' inner products with f in Eqs. (5-9) and (5-14), respectively.
C.

1

However, it has been shown that when the number of functions is more than the number of

random variables, the computational advantage of the adjoint method is lost (Liu et al., 1988d).
By solving 'q' adjoint problems, the second order sensitivites can also be evaluated. It should be
noted that the adjoint method is applicable to nonlinear problems as well, as the first and second
order equations are still linear.

5.3 Parallel Computing in PFEM

Recent advances in computing hardware and software, have made multiprocessing in
general and parallel processing in particular a viable and attractive technology. Parallel processing
provides an opportunity to improve computing efficiency by orders of magnitude. Probabilistic
computational mechanics exhibits several inherent levels of both coarse-and finite-grained
parallelism. It is imperative to develop the computational strategies and algorithms to maximize
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parallel processing efficiency and minimize parallel overhead. The parallelism in both the
probabilistic computations and the structural mechanics computations has been explored by Sues
et. al (1991,1992a). The implementation of parallel processing to general probabilistic structural

analysis problems has been studied by Sues et al. (1991, 1992a). The parallel computing for
probabilistic fatigue analysis has been implemented by Sues et al. (1992b) on both shared and
distributed memory machines.

The parallel implementation of PFEM can be easily achieved in the solution of the first-
order equations (sensitivity analysis). As shown from Eqs. (3-3)-(3-9), only one effective
stiffness matrix needs to be formulated. Once the zeroth-order solution is obtained, q equations

(Eq. (3-4)) can be solved in parallel to determine the response derivatives. Multiple levels of
parallelism can be achieved if the substructuring (Komzsik and Rose, 1991), domain
decomposition (Chan, et al., 1989) and operator splitting (Sues and Chert, 1992c) are also
employed in PFEM.

6. APPLICATION OF PFEM TO THE RELIABILITY ANALYSIS OF BRITI_E FRACTURE
AND FATIGUE

6.1 Introduction

In the previous section, the probabilistic finite element method, which is based on the
second-order perturbation, has been formulated to quantify the statistical moments of the response of
a stochastic system. In this section, the PFEM coupled with the first-order reliability method is
developed to determine the reliability of brittle fracture and fatigue crack growth. The constrained
optimization problem is formulated to calculate the reliability index. A Lagrange multiplier technique
along with gradient projection algorithms is used to solve the constrained optimization problem.

Fracture and fatigue have become important factors in the structural design and safety of
aging structures. The failure of an aging structure is usually resulted from microdefects activation,
propagation, and formation of major cracks. Due to the ramdomness in the configuration of
microdefects and uncertainty in the failure mechanism, the probabilistic fracture mechanics (PFM),
which combines the fracture mechanics with the stochastic methods, provides a useful tool to

address problems with large uncertainty.

The reliability analysis of flawed structures will here be classified into two groups of
problems:

1. brittle material problems, where the material contains flaws with the random location and
orientation. The major question is the reliability of the structure in the presence of these flaws.

2. ductile material problems, where failure is expected to result from the growth of a critical
flaw until it can lead to failure of the structure.

The first category of the problem has been addressed recently by Lua et al. (1992a, 1992b) in
quantifying the inherent statistical distribution of the fracture toughness of a multi-phase brittle
material. The second question is of particular relevance to the safety of aging structures and
nondestructive evaluation techniques. Because the threshold of detection is substantially greater
than flaws sizes which may lead to failure over the course of time, inspection cycles should be set
so that the reliability of an aging structure remains acceptable in these circumstances. Although a
deterministic analysis can obtain an estimate of the fatigue life, the uncertainties in crack growth
rates and the initial crack lengths detract from the usefulness of such solutions.
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In this section, the application of the PFEM and the first-order reliability analysis for the
brittle fracture and fatigue is presented. A brief review on the reliability methods is given first.
The fusion of the PFEM and reliability analysis for probabilistic fracture and fatigue are then

presented. Performance of the methodology developed is demonstrated on example problems.

6.2 Reliability Analysis

Reliability analysis is used to determine what is the likelihood that a structure subjected to
uncertain loads, material properties and geometry, will satisfy a limit state criterion. Several text

books and monographs on the methods and application of the reliability theory have been written,
i.e. [Ditlevsen (1981), Ang and Tang (1984), Augusti et al. (1984), Madsen et al. (1986) and
Melchers (1987)]. An overview of the first-order and seconder-order reliability methods

(FORM/SORM), as well as various Monte Carlo simulation schemes has been given by Bjerager
(1989). As the PFEM provides a powerful computational tool to determine first- and second-
moment of random parameters, the second-moment reliability methods can be easily combined
with the PFEM to obtain measures of the reliability of the structural systems.

Throughout this section the uncertainties-in load, material properties, component geometry
and crack geometry- are represented by a q-dimensional vector of random variables denoted by b =

T

[b 1..... bq] . A random variable reliability problem is described by a performance function, g(b),
which is a continuous measure of the ability of a system to perform as designed. Three states of a

system, namely, the limit-state surface, the failure state, and the safe state, are defined by

g(b)=0 g(b)<0 and g(b)>0 (6-1)

respectively. The probability of failure is given by

/
Pf = / fB(b) db (6-2)

J, (b)_; 0
where fB(b) is the multivariate density function of b. Two difficulties are associated with Eq. (6-

2). First, the domain of integration (g(b) < 0) is an implicit function of the random vector b.
Second, standard numerical integration of this multiple integral is prohibitively complicated as the
number of random variables becomes large. Two approaches- MCS and failure surface

approximation methods such as the first or second order reliability method (FORM or SORM)-
have been employed extensively to calculate Eq. (6-2). In the first-order reliability method
(FORM), the limit-state surface in the standard normal space is represented by the tangent
hyperplane at the design point. In the second-order reliability method (SORM), the limit-state
surface in the standard normal space is replaced by a quadratic surface, which is tangent at the

design point. While MCS is completely.general, it is very expensive and time-consuming for small
probabilities of failure, which is the major concern in reliability engineering. FORM and SORM
are more accurate and efficient for extreme probability of failure (e.g., 0.0001 or 0.9999
cumulative probability), however implementation can be more complex. In the present study, the

FORM is applied to predict the reliability of a flawed component.

In order to make use of the properties of the standard normal space (rotationally symmetric

and exponential decay), a transformation is introduced to map the original random variables b to a
set of standard, uncorrelated normal variables r. Eq. (6-2) in the r-space becomes
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(6-3)

where ( )t denotes the transpose of a vector or a matrix, and "_(r) (= g(b(r))) is the performance
function in the transformed r-space. FORM approximates the calculation in Eq.(6-3) as follows:

first the point r* on the limit-state surface (g(r) = 0), which has the minimum distance to the origin,

is found through an iterative algorithm, then the limit-state surface at the design point r* is

replaced with a tangent hyperplane given by

g(r) = --0g(r) (ri - r*)

Ori

The resulting first order approximation to Eq. (6-3) is

(6-4)

LPfl

•]"_--_-L_"_ (ri- r_)<0
Ori

(2X) -q/2 exp(- 1 r t r)dr = .(-13) (6-5)

where the reliability index 13is defined by

13 = (r "t r') 1/2 (6-6)

and _( ) is the standard normal cumulative probability. The step to determine the most probable

point (r*)on the failure surface is the most critical in the reliability analysis. It generally requires to
form an iteration and optimization scheme to calculate the gradients of the performance function.

In this paper, the reliability index [3 is determined by solving the following optimization

problem in r-space, i.e.,

[3 = rain (rTr) 1/2, subject to g(r) = 0 (6-7)

The optimization can be solved using any general non-linear optimization algorithm such as HL-RF
method (Hasofer and Lind, 1974; Hohenbichler and Rackwitz, 1981; Rackwitz and Fiessler,

1978), gradient projection method (Haug and Arora, 1979) and the modified HL-RF method (Der
Kiureghian and Liu, 1988). A fast convergence rate is essential in selecting an iteration method.

The second order reliability method based on the second order Taylor expansion of the
failure surface is given by Fiessler et al. (1979), Breitung (1984), Der Kiureghian et al. (1987),
and Tvedt (1983).

6.3 Brittle Fracture Reliability Analysis

In order to model the singularity at the crack-tip, Bestfield et al (1990) used enriched
element (Gifford and Hilton, 1978). Other methods such as J-integral approach (Rice, 1968) and
hybrid elements (Akin, 1976; Barsoum, 1976; Henshell and Shaw, 1975; Tong et al., 1973) can
also be used. The enriched element approach has the advantage that mode I and II stress intensity

factors, _;I and KII are directly calculated along with the nodal displacement. This simplifies the

development of the sensitivity equations which are needed in fu'st-order reliability analysis.
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Thediscretizedglobal finite elementequationsareobtainedby assemblingtheenriched
elementsthat surroundthecrack-tip andtheregularelementsthat model the remainderof the
continuum.Theglobalsystemof [neq+ 2] equations(i.e.,numberof displacementequationsplus
modeI andII stressintensityfactors)is

K(b) 8(b) = f(b) (6-8)

where the generalized displacement, 8, and external force, f, vectors are

{ }d (b) and f(b) = (6-9)
8(b) = )c(b) O(b)

respectively and the global stiffness matrix, K(b), is given by

R(b) C(b) ]
T (6-10)

K(b) = C(b) E(b)

In Eqs. (6-8) through (6-10): d and h are the regular displacement and external force vectors,

respectively; R, E, and C are the [neq x neq] regular stiffness matrix, the [2 x 2] stiffness matrix

from the enriched terms, and the [neq x 2] coupled stiffness matrix from the regular and enriched

terms, respectively. The other submatrices in Eq. (6-9) are

tfi b>/_:(b) = and O(b) = f (b)
Kil(b) II

(6-11)

where the two terms fI and flI are zero if the enriched element is not on a loaded boundary.

Equations (6-8) through (6-11) are solved by condensing out the stress intensity factors (i.e., static
condensation).

For mixed Mode I and Mode II fracture, several kinds of fracture criteria have been

summarized by Wu and Li (1989). Among these criteria, the most widely used are: the maximum
principal stress criterion proposed by Erdogan and Sih (1963) and the minimum strain energy
density criterion, Sih (1974). In the case of mixed mode fatigue, the fatigue laws are generally
based on an equivalent Mode I case to simulate actural mixed mode behavior. In order to be
consistent with the mixed mode fatigue laws, the maximum principal stress criterion (Erdogan and

Sih, 1963) is applied here to determine the equivalent Mode I stress intensity factor. Thus, the

performance function for the mixed mode fracture can be expressed as

g(b) =Kc-_eq (6-12)

Equation (6-12) implies that fracture occurs when the equivalent Mode I stress intensity factor,

r,eq,.exceeds the critical value, r,c. The direction of crack growth where the hoop stress becomes
maximum is given by

T
Z(n, 0) = O n = 0 (6-13)
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where

sin 0 ]
0 = (6-14)

3 cos 0 - 1

In Eq.(6-14),0 is measuredfrom thecurrentcrackline. TherelationbetweentheequivalentMode

I stressintensityfactor0Ccq) andstressintensityfactor0¢I,_¢u) is givenby

K
eq

T
= _ _¢ (6-15)

where

l°/E°1COS _-

= cos 2

0
- 3 sin _-

(6-16)

and 0 is determined by Eq. (6-13). When only Mode I or Mode II fracture is present, Eq. (6-12)

can be rewritten as

g(b) =_c-_i, i= I, II (6-17)

where Kc is given by

V,c=_Clc (for Mode I) and V,c = 2_-_Ic (for Mode II) (6-18)

In Eq. (6-18), _¢Ic stands for the fracture toughness. As indicated in Section (6.2), the

determination of the reliability index for calculating the first-order probability of failure in the
FORM is achieved by solving an optimization problem with one constraint (limit-state condition).
In order to incorporate other constraints such as equation of equilibrium, crack direction law (in
fatigue crack growth problem) in the formulation, the method of Lagrange multipliers can be
applied. The statement of the optimization problem for brittle fracture is described in the
following.

The nonlinear programming problem consists of determining the correlated random

T (_T T T

variables, b = [b I ..... bq] , and the generalized displacements, -- [d , )¢ ], that minimize the

distance from the origin to the limit-state surface in the independent standard normal space. The

minimizer is termed as the reliability index [3 (Eq. (6-7)). The minimization is subject to the

following equality constraint:

K(b) 8(b) = f(b) (6-19)

(i.e., equilibrium) and the following inequality constraint:
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g(b) < 0 (6-20)

(i.e., the performance function being on the limit-state surface is a constraint in the optimization

problem).
Equations (6-19), and (6-20) are converted to the Kuhn-Tucker problem (Arora 1989) by

defining a Lagrange functional, L, of independent variables b, 8, It, _., and ct as follows

T 2
/_(b,_5, it,_.,c_) = rTr + I.t [f- K 8] + X [g + o_] (6-21)

where _t is a Lagrange multiplier for equilibrium, _. _>0 is a Lagrange multiplier for the inequality

constraint, and ot is a slack variable that is introduced to ensure that g _<0. Depending on the sign

of _., the function to be minimized will increase or decrease with a change in g. In other words, if

_. > 0, then rTr will decrease (i.e., minimize) while g < 0 (Converse 1970). The Kuhn-Tucker

necessary conditions for the minimization of Eq. (6-21) are obtained by setting the derivatives of

the Lagrange function with respect to the independent variables b, 8, p., X, and o_ to zero, i.e.,

0L a[r T r ] TOb - bb + _t { [f - K 8]} + k _b = 0 (6-22)

T aga/_ _ -it K + X = 0 (6-23)
b8 38

b/_
- f - K 8 = 0 (6-24)

bit

OL 2
- g + o_ --- 0 (6-25)

b_

0L
- 2 X ot --- 0 (6-26)

hot

The optimization requires the solutions of Eqs. (6-22)-(6-26) for b, 8, _t, ),. > 0, and o_. Equation
(6-24) is simply equilibrium; and Eqs. (6-25) and (6-26) can be simplified to eliminate the slack

variable, or, such that, 3,.g = 0 and g < 0 which ensures that )_ > 0.

Since 8 and b are independent variables in the Lagrange function (see Eq. (6-21)), the

partial derivative of the second term with respect to b in Eq. (6-22) can be expressed as

O [f_KS]_ el" OK3-6 - 3-fi- -a-ff (6-27)

To simplify the right hand side of Eq. (6-27), the first-order probabilistic finite element equation
(Eq. (3-4)) is employed for the present static problem, i.e.,

0<5 0f 0K
K .._--6-= -_-_ - -,b--6-8 (6-28)
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whichyields

O [f_ KS]: K c)_i;76 3-6

when Eq. (6-28) is substituted into Eq. (6-27).
and using Eq. (6-23) in the right hand side we obtain

dg 28 (6-30)
p.T _b [f- KS] = X "_ _-'-_-

which can be expressed as

0g _c (6-31)
gT_b[f-K_]=_-_ _

since g is only a function of _.
Substituting Eq. (6-31) into Eq. (6-22), the final optimization problem becomes

L [3 + EL g = 0 (6-32)

(6-29)

Now multiplying each side of Eq. (6-29) by I.tT

when k > 0 where

Lg = _g + _g ______K (6-33)
3b 0N bb

L [3 0
- 0b [rTrl (6-34)

In Eqs. (6-34), _b [rTr] is computed either explicitly or by finite difference depending if the

random variables are normal or non-normal. In order to perform the sensitivity analysis on the

bK
stress intensity factors, namely, _-6' the probabilistic finite element method described in Sec. 3 can

be applied to accomplish this task. Since we are only interested in the sensitivity of the stress
intensity factors, considerable computational effort can be saved by using the adjoint method as
described in Section 5.2. The iteration algorithm for the brittle fracture reliability is given by
Besterfield et al. (1990).

In order to demonstrate the applicability of this approach to the brittle fracture reliability
analysis, a single edge-cracked beam subjected to a concentrated point load is considered (see Fig.
7-5). The problem constants are given in Table 7-1. Due to symmetry, ten regular 9-node
elements and two enriched 9-node elements are depicted in the left half of the beam as shown in
Fig. 7-5. The applied load is modeled with one random variable with a coefficient of variation of
0.1 and the crack length is also modeled with one random variable and the coefficient of variation
of 0.1. The convergence criterion for the optimization is 0.001. The variance of the Mode I stress
intensity factor with randomness in force, material, crack length and the combination is presented
in Table 7-2 for the adjoint method. Also presented in Table 7-2 are the summaries of the
numerical performance and results of the reliability analysis (e.g., starting point, number of
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iterations,thefailure point, reliability index,andprobabilityof failure). As shownin Table7-2,
therandomcracklengthhaslesseffecton theprobabilityof failuredueto thesmallervariancefor
randomcracklength.

6.4FatigueCrackGrowthReliabilityAnalysis

Fatiguecrackgrowthis sensitiveto manyparametersandtheseparameterscanseldombe
determinedaccurately.Uncertaintiesin thecrackgeometry,materialproperties,crackdirection,
crack length,componentgeometry,andloadtime historyall play a role. Thus,thepredictionof
fatiguefailuremustbetreatedasaprobabilisticproblem.

Thefirst ordersecondmomentreliabilitymethod(FORM)canbeappliedto thisproblemas
beforeby solvinga constrainedoptimizationproblem.Due to thecombinedeffectsof external
loading,unsymmetricalcomponentgeometryandcrackgeometry,cracksrarely grow in astraight
line. Thus,themixed-modefatiguecrackgrowthlaw andcrackdirectionlaw shouldbeemployed.

Themostcommonlaw for fatiguecrackgrowthis theParis-Erdoganmodel (1963),which
givesthefatiguelife, T, by

af
da (6-35)

Y = f D(A_eq) n

a
1

where a 1 and af are the initial and final crack lengths, respectively, da is the random crack path; D

and n are primarily material parameters but can also depend on the loading and environmental

effects; and A_eq(a) is the range of equivalent Mode I stress intensity factors, i.e.,

max rain
A_¢ = _¢ _ _¢ (6-36)

eq eq eq

rain max
where _ and _ are the minimum and maximum equivalent Mode I stress intensity factors,

eq eq
respectively, associated with the minimum and maximum cyclic applied stresses, respectively. If
the minimum equivalent Mode I stress intensity factor is assumed to be zero, then

max
A_¢ = _¢ - _¢ (6-37)

eq eq eq

The direction of the crack can be considered to be a random function, which will depend on the

material properties and the history of the loading and the crack path. At each step, the statistics of
the crack-tip, as reflected in this random function, in conjunction with the previous length of the
crack and its orientation, will be used to obtain the new configuration. Based on the maximum

hoop stress criterion (Erdogan and Sih, 1963), the crack growth direction Z(_:, 0) given by Eq. (6-
13) is also employed here. Unlike the case of brittle fracture discussed before, the performance

function for fatigue crack growth is given by

g = T - T (6-38)
S
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whereT is the servicelife of thecomponent. In other words,the componentfails whenthe
s

fatiguelife is lessthanthedesiredservicelife. Theperformancefunctioncouldalsobeexpressed
in termsof acriticalcracklength.

Thecalculationof thereliability indexby thefirst-orderprobability theoryis performedin
the sameway as before by solving a constrainedoptimization problem. Before stating the
optimization problemfor fatigue crack growth, the crack direction law (Eq. (6-13)) must be
discretizedinto "npts"discretizationpointsalongthecrackpath. At eachcrackpathdiscretization
point,thecrackdirectionis

T
Zk = O k _ck = 0

k = 1..... npts (6-39)

where _k and O k represent K:and O evaluated at _ = {k' k = 1..... npts. Thus, at each crack path

discretization point, the new crack direction is recalculated and the crack is then allowed to grow to
the next discretization point.

The calculation of the reliability index by the'first-order probability theory is posed as a

constrained optimization problem. Unlike the previous brittle fracture reliability problem, both
equality and inequality constrains have to be satisfied at each crack path discretization point. Also,
the crack direction law (Eq. (6-39)) has to be included in the Lagrange function. By defining a

Lagrange function, L, of independent variables b, P'I ..... P'npts' 81 ..... 5npts' CPl ..... _Pnpts'

01 ..... 0npts, ;L, and o_, we have

L (b, t.ti, 8 i, q_i' 0i' 3., c_)

(= r r + I'ti [f'l - K.1 5.1] + cPk Zk + _" T- Ts + (6-40)
i=l k=I

where I.ti is a Lagrange multiplier for equilibrium, Cpk is a Lagrange multiplier for the crack

direction law, o_ is a slack variable which is introduced to ensure that g < 0 and k > 0 is a Lagrange

multiplier for the inequality constraint.
The necessary conditions of Eq. (6-40) (i.e., derivatives with respect to the independent

variables) then lead to

/)L _ [r Tr] + - qok(zk), b= _-b lai _ [fi K._ _5il + + _ T, b = 0
i=l k=l

(6-41)
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=0 i = 1, ..., npts, no sum on i (6-42)

_L T

08. - /.1i K.I +
1

_sq) k (Zk),5.

k=l 1
+ _. T,8. =0

I

i = 1, ..., npts, no sum on i (6-43)

_L 2
- T-T +o_

0_. s
=0 (6-44)

0L

0or

-2_.o_=0 (6-45)

0L

Oq_i l

= 0 i = 1..... npts (6-46)

s T OKk n_s
3L = _tk 20. 8k + q_k (Zk)'0. + X T,0. 0
_)0. k=l k=l 1 1

1 1

i = 1 ..... npts (6-47)

where: T, b in Eq. (6-41), T,8. in Eq. (6-45), and T,0. in Eq. (6-47) are the derivatives of the
1 1

fatigue life T with respect to b, 8 i, and e i, respectively, assuming b, 8 i, and 0.x are independent

variables; and (Zk), b in Eq. (6-41), (Zk),8. in Eq. (6-43), and (Zk),0. in Eq. (6-47) are the
I 1

derivatives of the crack direction law Z k with respect to b, 8.,1 and e i, respectively, assuming b,

8 i, and 0.1 are independent variables. The optimization requires the solutions of Eqs. (6-41)-(6-47)

for b, gl ..... lanpts , 81 ..... 8npts, o_, _. _>0, g)l' ""' q_npts and 01 ..... 0npts. Equation (6-42)

is simply equilibrium at each discretization point; Eq. (6-46) is the crack direction law at each

discretization point; and Eqs. (6-44) and (6-45) can be simplified to eliminate the slack variable, o_,

such that _. g = 0 and g _<0, which ensures that _. _>0.

Since 8. and b are independent variables in the Lagrange function [see Eq. (6-40)], the

partial derivative of equilibrium with respect to the correlated random variables in Eq. (6-41) can be

expressed as

_gf. OK.

-.rf- K. 8ilJ = 3-6 - -3-6 8.1 I
no sum on i, i = 1, ..., npts (6-48)

To obtain an expression for the fight hand side of Eq. (6-48), the first-order probabilistic finite
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elementequation(seeSection3) is employed,i.e.,

08. Of. _K.

K. x x x
1

no sum on i, i = 1 ..... npts (6-49)

which yields

05.
0 1

[fi " K.I 5il" = K.1 _ no sum oni, i= 1,...,npts (6-50)

when substituted into Eq. (6-48). Since 51 ..... 8npts, and, 01, ..., 0npts are independent

variables in the Lagrange function, Eqs. (6-43) and (6-47) simplify to:

T

I.ti K.I + q_i (Zi)'5. + _ T'5. = 0 no sum on i, i = 1, ..., npts (6-51)
I 1

and

OK.

I'tiT 00.1 8.1 + q_i (Zi)'0. + _"T'0
1 I 1

= 0 no sum oni, i= 1,...,npts (6-52)

T

respectively. Multiplying each side of Eq. (6-50) by ta i

yields

and substituting in Eqs. (6-51)-(6-52)

T 0
I'ti if6 [fi - K.1 5i] = _ '_

OK.

-1 1 5 _T,0"T,o._ Ki 00. i
I 1 I

OK.

(Zi),0" - (Zi),5 ' K'. 1 ' 5.
00. I

• I 1 1

no sum on i,

(Zi),5. + T,5.
1 I

05.
1

>g6

i = 1..... npts (6-53)

which can be expressed as

T 0
I'ti _-b [fi - K., 5 i] = X

OK.

T,& K-. 1 1 8. - T,O"
1 00. l

1 1 1

OK.
K-.1 I 5.

(Zi)'0.-(Zi)'5. ' 00. 1
I 1 1

no sum on i,

(Zi),_c" + T,_c"
I 1

0K.
1

3-6-

i = 1, ..., npts (6-54)
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sinceT andZ. areonly functionsof _ci, i = I .... , npts. After substitutingEqs.(6-52) and (6-54)l
into Eq. (6-41),thefinal form of theoptimizationfor reliability for fatiguecrackgrowth is given
by

where

L13+ )_ L g = 0 (6-55)

L l_ _ [rTr ]

r"

i=l

_gK.

T,5. K-.1 I _5. - T,0"
I 30. 1

1 1 1

DK. (Zi),_" + T,_.
1

K- 1
(Zi)'0.- (Zi)'8. 1 --

1

i=l

18. 1
D0. I

1 I

" 3K.

T,& K-. 1 15. - T,0.
i 00. 1

1 1 1

DK.

K-.1 i _.
(Zi)'0.-(Zi)'& I D0. 1

k I I I

(Zi), b

1

(6-56)

_" + T,b (6-57)

In Eq. (6-57): T, b, T,_:., T,0., T,5., (Zi), b, (Zi),K: ., (Zk),0., and (Zi),5. are determined
1 1 1 1 I 1

explicitly in Reference (Besterfield et al., 1991). The sensitivity of the stress intensity factors,

1

namely _-b--' is also computed by the PFEM.

In order to demonstrate the performance of the method for reliability analysis against failure

due to fatigue crack growth, a classical Mode I fatigue problem is presented. Figure 7-6 shows a
finite rectangular plate with a single edge crack of length a subjected to a distributed load. The

problem constants and second-moment statistics are given in Table 7-3. Due to symmetry, two
enriched 9-node elements and twenty-three regular 9-node elements are depicted on the upper half

of the plate. The reliability index is plotted versus the service life under the various types of

uncertainties for the reference solution 13 and the solution obtained by PFEM in Figs. 7-7a and 7-

7b, respectively. The same trends as the reference solution with the slight difference in the value
of the reliability index can be observed through comparison of Fig. 7-7a with Fig.7-7b. This
difference is due to the small numerical error in calculating the stress intensity factor by finite

element methods. As shown in Fig.7-7a, for a service life of 4 x 10 6 cycles, the reliability index
is less for uncertainty in the initial crack length (100 % coefficient of variation) and stress (25 %
coefficient of variation ) than for randomness in the final crack length (10 % coefficient of

variation), fatigue parameter D (30 % coefficient of variation), and fatigue parameter n (2.5 %
variation). When all five of the parameters are treated as random, the combined effect is much
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greaterthananyoneindividualeffect,asexpected.

7. SBEMFORTHE CURVILINEARFATIGUECRACK GROWTHRELIABILITY ANALYSIS

7.1 Introduction

Thedevelopmentof probabilisticfinite elementmethod(PFEM) and its applicationsto
linear, nonlinearstructural mechanicsproblemsand fracture mechanicsproblemshave been
discussedin theprevioussections.In thissection,wepresenta novelcomputationaltool, called
StochasticBoundaryElementMethod(SBEM),for thereliability analysisof acurvilinear fatigue
crackgrowth.

The SBIM basedon theperturbationtechniqueshasbeendevelopedby Ettouneyet al.
(1989)andDasgupta(1992)for quantifyingthestatisticmomentsof tractionsanddisplacementsof
a stochasticsystem. A generalmethodology,which combinesthe first orderreliability method
(FORM) with the mixed boundaryintegral equation method (Lua et al. , 1992c), hasbeen
formulatedmostrecentlybytheauthors(Luaetal., 1992d).Thepreformanceandefficiencyof the
developedSBEMhavebeendemonstratedbytheproblemof probabilisticfatiguecrackgrowth.

Thestate-of-the-artof boundaryelementmethodsalongwith variousof codesaregivenin
the BoundaryElement ReferenceBook (Mackerleand Brebbia, 1988). Due to its modelling
efficiencyandsolutionaccuracy,BEMshavebeenusedextensivelyin thefield of computational
fracturemechanics(Aliabadi andRooke,1991;Cruse,1988). The applicationof theBEM to a
curvilinearfatiguecrackgrowthispresentedin thissection.

Thecurvilinear fatiguecrackpathis mainlyattributedto the inherentinhomogeneityof the
advancematerialssuchasceramics,compositesor polycrystallinealloys. Theexistenceof amicro-
defectsuchasa void, a rigid inclusionor a transformationinclusionperturbsthe stressfield at a
growingcracktip, resultinginacurvilinearcrackpath. In orderto modelthesingularityat amoving
cracktip, anautomaticremeshingin conjunctionwith thequarter-pointsingularelement(Barsoum,
1976;HenshallandShaw,1975) hasbeendevelopedby Saouma(1984)to studythefatiguelife of
attachmentlugs. A remeshingschemebasedon theArbitraryLagrangianEulerian(ALE) together
with enrichedfiniteelementshasbeendevelopedby Besterfield(1991)in thereliability analysisof a
fatigue crackgrowth. For problemsof multiple fatiguecracksin which elastic interactionsof a
fatiguecrackwith micro-defectsaretreated,theremeshingschemewill beprohibitivelycomplicated.
Theformulationbasedon theBoundaryIntegralEquations(BIEs)hasseveraladvantagesin terms
of solutionaccuracyandmodelingefficiency.

Due to the degenerationof the usualdisplacementBIE for coplanarcrack surfaces,the
tractionBIE hasto beemployedonthecracksurface.ThetractionBIE aloneis insufficientto solve
theproblemdueto thecouplingandinteractionof theboundaryof thecomponentwith thegrowing
crack. Thus,the displacementBIEs havealsoto beapplied. This setof mixed BIEs providea
uniquesolution for theboundaryvalueproblem. Theapplicationof themixed BIEs to theelastic
interactionsof a fatiguecrackanda micro-defectcanbefoundin theReference(Luaet al., 1992c).

By adding a few elementsto permit crack extensionalong the crack growth direction,
remeshingcanalmostbeavoided.Similarto theapproachusedin enrichedfinite elements(Gifford
andHilton, 1987),aspecialinterpolationfunctionwhich incorporatesthestressintensityfactorsis
employedto model the neartip CrackOpeningDisplacements(COl)s). The mixed BIEs are
presentedin Sec.7.2for amulti-connectedregionwith afatiguecrack. An enrichedelementwhich
incorporatesthe mixed modestressintensityfactorsis appliedto characterizethe singularityat a
moving crack tip. The responsegradient,which is key in FORM, is determinedin Sec.7.3 by
direct differentiation. Due to the presenceof threerandomprocessesin the expressionof the
responsegradient,namelythemodeI andmodeII stressintensityfactorsand thecrackdirection
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angle,thefirst orderresponse-surfacemodelis employedto determinetheresponsesensitivityof
theserandomprocesses.An iterationschemebasedon theHL-RF method(RackwitzandFiessler,
1978) is employedto find the most probablefailure point (or designpoint). Due to the high
accuracyof theresponsegradientcalculationbasedon thedirectdifferentiation,fast convergenceis
obtainedin the numericaliteration. The accuracyandefficiency of the presentapproachare
demonstratedin Sec.7.4 througha fatiguecrack growth problemwith randomnessin the crack
geometry,defectgeometry,fatigueparametersandexternalloads.

7.2 MixedBIEs for aMulti-ConnectedRegion

Figure 7-8 showsa finite linearelastic body boundedby outer boundaryFo and inner
boundariesFi (i = 1, 2..... M), containing a finite crack under remote loading t*. A local

Cartesiancoordinatesystem(x',y') with origin at thecenterof thecrack is employedwith they'-

axis normal to the crack surfaceI-'c. On the displacementboundary Fu, the displacement
ill

components u_ are prescribed; and on the remaining outer boundary Ft, the traction components ti
M

are given. The boundary conditions on the inner boundary FI = _ Fi can be specified based on
i=l

the characteristics of a micro-defect (Lua et al., 1992c).

The usual displacement BIEs (see e.g. Telles, 1983) can be successfully applied on both

inner boundary Fi and outer boundary Fo. The resulting BIEs on Fiu Fo are

c_j uj(_) =
I+ro

Uik(_;X) tk(X) dF(x) -

+r'o

f

tik(_;X) Uk(X) dF(x) - Tin tnk(_ ;X ) AUk(X ) dF(x')

for _ _ F I k.) F o (7-1)

where the symbolS" stands for the principal value of the integral in Cauchy's sense, and all the

quantities with the prime ( ' ) are defined in the local coordinate system; tk(X) and Uk(X) are the

components of traction and displacement, respectively, in the global coordinate system, ui*k(_;x)

and tik(_;X) represent the displacement and traction, respectively, in the k-th direction at the field

point x corresponding to a unit point force applied at the source point _ in the i-th direction.

Explicit expressions for these free space Green's functions are given in Telles (1983). The
transformation from global to local coordinate system is given by the following transformation

matrix T (or Tin ):

T=[ cos0o -sin0o] (7-2)
sin00 cos0o

The coefficient matrix Cij depends on the smoothness of the boundary; Cij = 2_ _ij (for smooth

boundary). The quantity Aum(X') designates the COD on the crack surface Fc in the local
coordinate system defined by
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zXu_(x') = u_,(x') - Um(X') (7-3)

where u+(x ") and U_n(X') are the components of the displacement on the upper and lower crack
surface, respectively. The coupling term representing the effect of CODs, which differs from the

usual displacement BIEs, is the 3rd term in Eq. (7-1).

The displacement BIE (7-1) alone is insufficient to solve for all the unknowns, namely, the

unknown displacement and traction on FIu Fo and CODs on Ft. Due to the degeneration of the
displacement BIEs for coplanar crack surfaces, the higher order BIEs based on the traction

boundary data on Fc is employed. Using the prescribed traction boundary condition on Fc, the
resulting traction BIEs become

I Iti(_) = nj { ui*jk(_;X) tk(X) dF(x) - _ijk(_;x) Uk(X) dl-'(x) -

*to
*to

- Tin Tjs qnk(_ ;X) AUk(X') dF(x')} for _ _ Fc (7-4)

dFc

where the symbol (_) stands for the finite-part of a divergent integral, ti are the prescribed traction

components on the upper crack surface Fc*, and nj=(sin00, -cos00) are the components of the

normal vector to F+ in the global coordinate system. The free space Green's function ui*jk@ x) and

'q/ijk(_; x) are given by Lua et al (1992c).

In order to characterize the crack tip singularity, an enriched element which incorporates

the stress intensity factors (SIFs) is used at the crack tip:

r _ t _

Aul(s) 2(1-v)_ _(_aaKII_ , Au2(s) 2(1-v)_t__aaKl
(7-5)

where s is the distance behind the crack tip, a is the semi-crack-length, and KI and KII are mode I
and mode II SIFs. In the numerical implementation of the mixed BIEs (Eqs. (7-1) and (7-4)), all

the boundaries, namely FI, Fo and Fc have to be discretized first. By dividing the boundary

FI + Fo and the crack surface Fc into NE and NC elements, respectively, the discretized version of

the mixed BIEs can be expressed as

Cij Uj(_) = Z

NE NC

[G_k(;;Xm) t_k" H_k(;;Xrn)U_a] " Z Qriik(_';Xm)AUk m

m=l m=l

for _ = Xl, x2 ..... XNE (7-6)

ii(_) = nj(_) { [D_ijk(_;Xm) t_k- S_k(;,Xm) u_]- Z Rin_k (; ;Xm) AU

m=l m=i

. for _ = xl , x2 ..... XNC (7-7)
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where the coefficient matrices G_, H_.k , Qnik, Dir_k, Sij_, and R_jk are given by Lua et al (1992c).

7.3 FORM for the Curvilinear Fatigue Crack Growth

As described in Sec. 6.2, for the general correlated and non-normal random variables b,

three steps are required in the first-order reliability analysis (FORM). They are: 1) transformation
of b into the uncorrelated standard normal vector r by Rosenblan transformation (Rosenblatt,

1952), 2) approximation of the failure surface in the r-space by a flat hyperplane at the most likely
failure point (design point), 3) determination of the reliability index b by computing of the
minimum distance from the origin to the limit state surface. As discussed in Sections 6.3-6.4, the

design point has to be determined by an iterative optimization algorithm, which involves repeated
computation of the limit state function (Eq. (6-1)) and its gradient. In order to ensure rapid
convergence, an accurate determination of the response gradient is required.

Unlike the previous sections (6.3 and 6.4), where the response gradients or sensitivities
have been determined by PFEM, the response gradients are calculated using SBEM. The direct
differentiation coupled with the response-surface method is employed to perform the sensitivity

analysis.

Assuming that the crack geometry (ai , af, xo, Y0,00), fatigue parameters (D, n), external

load (% and defect geometry (Xc, Yc, rc, Pi) (see Fig.8) are modeled by a q-dimensional random

vector b, the performance function for a fatigue problem is given by Eq. (6-38). Since the service

life T s is a deterministic variable, the gradient of the limit state function is given by the response

sensitivity, i.e.,

dg
_-b = _b T(b, Keq(b)) (7-8)

where T is given by Eq. (6-35). In order to facilitate the response gradient calculation, the line

mapping is applied to map a curvilinear crack path to a local coordinate system, _ ( _ e [-1, +1] ).

The mapping function is defined by

a = l[(af - ai)_ +{af+ ai)] (7-9)

Assuming that the crack geometry (ai , af, x0 , Y0,00}, fatigue parameters (D, n), external load 0:

), and defect geometry {Xc, Yc, rc, Pi} (see Fig.8) are modeled by a q-dimensional random vector
b (or r in the transformed space), and using Eqs. (6-37) and (7-9), Eq. (6-35) can be rewritten as

flT(b, l'_eq(b)) = fib, Keq(b, _)) d_

where the function f in Eq. (7-10) is given by

(7-10)

f(b, Keq(b, _) =
J(b)

D [lCeq(b, _)]n

(7-11)

The Jacobian J in Eq. (7-11 ) is defined by

J(b) =½ (af- ai) (7-12)
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Note that the function _:eq(b, {) can be described only in an algorithmic form through the mixed

BIEM (Eqs. (7-1) and (7-4)). This is the place where the mixed BIEM interfaces with the FORM
to form the stochastic BIEM. Using Eqs. (7-10), (7-11) and (6-15), the total derivative of the

_)T

response (_--_-) is given by

_--g= fb + f,_. ( _:_q,_,
_Ki(b, _) _Kli(b, _) _0(b, _) ]

_b + _eqa:, _b + Keq,° _-----'_ )] d_

(7-13)

where _eq,_ , _eq,_:, and JC_q,0are derived from Eq. (6-15) and given by

0

Keq,_ct = COS 3

(7-14)

0 0

Keq,_:,j = -3 COS 2 "_ sin
(7-15)

I ( 0 °)13cos cosOsin  ,+ s .  cos Keq,0 = "_

(7-16)

Both fb and f_oq in Eq. (7-13) can be determined explicitly from Eq. (7-11). The results are

1 _J J _D Jln(_eq) _n
fb=

D D
(7-17)

n J(_ec0 -(n+l) (7-18)
f"_ =" D

Due to both the complicated explicit expressions and implicit functions involved in Eq. (7-
13), numerical integration is required to calculate the response sensitivity (Eq.(7-13)). By dividing
the integration interval [-1, +1] into Npts-i line elements, which correspond to Npts-1 crack
growth steps, and applying the trapezoidal rule, Eq. (7-13) can be approximated by

_3T _ts [fb + f _:,q( K:eq,_:t
"_-= n=l

o_K'i(b, _) c_K:n(b, _) o_0Co,_)]

_)b + _q,,¢,, bb + I¢m,0 _6 ]Z Wn

(7-19)

where _n = -1 + 2(n-1)/(Npts-1), and Wn are the integration weights given by

Wn = 1 (for n=l or n=Npts), Wn = 2 (otherwise)
Npts-1 Npts- 1

(7-20)

Since 1<I, _:n and 0 are implicit functions of both b and _ in Eq. (7-19), the direct calculation of
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these response sensitivities, namely, Db ' Db and _ is not feasible in this case.

As shown in Eq. (7-19), the key step in the implementation of stochastic BIE.M for a
curvilinear fatigue crack growth reliability is to determine three response sensmvltles (

D_I _9_ii D0

Db ' Db and _ ) at each integration point _n (n= 1, 2 ..... Npts). In addition to the implicit

dependence of functions _cI(b, _), K:la(b, _) and 0(b, _) on both b and _, these three functions

represent three random processes due to the presence of the random vector b. Since

_I(_), _II(_) and 0(_) at a given realization of b can be easily generated by using the mixed BIEM

(see Sec. 7.2), the response-surface approach (Faravelli (1989, 1986)) is employed to determine

(DK I DKn DO)the response sensitivity _ _-_ , Db and _ at each discretization point _n (n =1, 2 ..... Npts). The

first order response model in b is employed in conjunction with factorial experiments with each

factor at two levels (Myers, 1971). As _I(b, _), _:Ii(b, _) and 0(b, _) are independent of the fatigue

parameters, D and n, the dimension of b in _I, _I and 0 is q-2.

With the help of the deterministic solver based on the mixed BIEM, 2q-2 computer

simulations are performed in accordance with predefined factorial simulations. By performing the

least squares fitting process at each crack path discre.tization point _n (n =1, 2 ..... Npts), the

D t(b, DO(b,
history of the response sensitivity of _b _ _b and _b / at the L-th iteration, b L

can be determined. Substituting the results

_KI (b, _n) D_II(b' _n) DO(b, _n)
and ; n = 1,2 ..... Npts) into Eq. (7-19), the sensitivity of the

( Db ' Db 3b

fatigue life T with respect to the primary random vector b at b E can be determined. For a given

service life Ts, an iterative algorithm to obtain the location of the design point b*, the response

sensitivity at the design point [0bib" and the reliability index (or the probability of failure) can be

found in the Reference (Lua et al., 1992d).

7.3 Numerical Results

In order to show the accuracy and efficiency of the stochastic BIEM in a curvilinear fatigue

crack reliability setting, a single edge-cracked plate with a random transformation inclusion is
considered (see Fig. 7-9). The plate geometry (W, L), initial crack location (x0, Y0), initial crack

angle (00), final crack size (af), and material constants (aluminum 7075-T651) are deterministic

parameters given by

L = W = 2.0 in ,x0 = -1.0 in ,Y0 = 0.0 in, 00 = 0.0 (7-21)

af = 0.5 in, p = 3.866 x 10 6 psi, v = 0.33 (7-22)

where p is the shear modulus and v is the Poisson's ratio. The crack geometry (ai), external load

('c), fatigue parameters (D, n), the defect geometry (xc, Yc, re), and the internal pressure (Pi)

resulting from the residual strain in the inclusion are assumed to be independent random variables
with specified probability density functions.

The statistical parameters of random input variables (mean, standard deviation and
coefficient of variance (COV)) along with corresponding distribution functions are listed in Table
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1. As shownin Table4, the initial cracksizeaihasthelargestdispersion(COV =60%). For the
initial cracklengthai, a uniform distribution with a tail is employedhere(seeFig. 7-10). The

detection threshold, which is equal to 7.5 x 10 .3 shown in Fig. 7-10, represents the lower limit of

an inspection device to detect the presence of a small crack. Below the detection threshold the

probability density is assumed uniform; above the threshold the probability density decays linearly
to zero, representing false negatives of the inspection technique. For the purpose of verifying the
accuracy of the stochastic BIEM, the Monte Carlo Simulation (MCS) for the sample size

Ns = 2000 is used.

The Cumulative Distribution Function (CDF) of the fatigue life T obtained by the stochastic

BIEM for values of service life Ts are presented in Fig. 7-11. The agreement of MCS and SBIEM

results shown in Fig.7-11 demonstrates the accuracy and efficiency of the stochastic BIEM. As a
rule of thumb (Bjerager, 1989), the sample size necessary for MCS to get a probability estimate

with good confidence is around 100/pf. For small probabilities of failure pf(= 10 .3 - 10-6), which

are the major interest in reliability engineering, one needs 105 - 108 Monte Carlo simulations to
achieve good confidence. The number of iterations in the stochastic BIEM required to find the

design point b* is only of order 15 to 20 for [3 = 3 - 5 (or pf = 0.001 - 0.3 × 10 -6 ). Therefore the
stochastic BIEM based on FORM has an overwhelming advantage over the MCS for small

probabilities of failure in terms of solution accuracy and efficiency.

The reliability index (13)versus the service life (Ts) is shown in Fig. 7-12 along with the

results of no micro-defect. As shown in Fig. 7-12, the presence of a random transformation
inclusion has a detrimental effect on the fatigue life. The comparison of response sensitivities at
Most-Probable-Points (MPPs or design points) versus the probability of failure for both cases is

plotted in Fig. 7-13. As shown in Fig. 7-13, the presence of a random transformation inclusion
changes the response sensitivity of ai significantly. The comparison of the loci of the Most-
Probable-Point (MPP) of crack geometry (ai) is shown in Fig. 7-14. Due to the presence of the
random transformation inclusion, the locus of MPP of ai changes considerably as shown in Fig. 7-

14. When the value of ai increases, the probability of failure pf becomes large (see Fig. 14). This is
the main reason why the routine crack inspection is so important to avoid the large probability of
failure.

8. Conclusions

The Probabilistic Finite Element Method (PFEM) is presented, which is based on the

second-order perturbation. Due to the discrete nature of the finite element formulation, the random
field has to be also discretized. Existing approaches for representation of random fields are outlined.
To the efficient characterization of the random field, the transformation of the original random
variables into a set of uncorrelated random variables is introduced through an eigenvalue

orthogonalization procedure. Both single-field variational principle and three-field Hu-Washizu
variational principle are employed to develop the PFEM for linear, and nonlinear problems,
respectively. The computational aspects in the numerical implementation of the PFEM are also
presented.

The accuracy and efficiency of PFEM in quantifying the statistic moments of a stochastic
system are demonstrated through two examples: 1) a stochastic spring-mass system under sinusoidal
excitation; 2) a cantilever beam subjected to large deflection. The results are in good agreement with
Monte Carlo simulations (MCSs). The computational efficiency of PFEM far exceeds MCS. Since
the PFEM developed essentially involve solution of a set of deterministic problem, it is easily
integrable into any FEM based code.
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The PFEMcoupledwith thefirst-orderreliability methodis alsopresentedfor thereliability
analysisof both fractureandfatigue. Themethodologyconsistsof calculatingthereliability index
via anoptimization procedure,which is usedto calculatethe probability of failure. The PFEM
providesapowerful tool for thesensitivityanalysis,which isrequiredin an iterativeoptimization
algorithm. Performanceof the methodologypresentedis demonstratedon a singleedge-cracked
beamwith aconcentratedloadandaclassicalmodeI fatiguecrackgrowthproblem.

In addition to the PFEM, the stochastic boundary element method (SBEM), which combines
the mixed boundary integral equation with the first-order reliability method, is also presented for the
curvilinear fatigue crack reliability analysis. Due to the high degree of complexity and nonlinearity
of the response, direct differentiation coupled with the response-surface method is employed to
determine the response gradient. The reliability index and the corresponding probability of failure
are calculated for a fatigue crack growth problem with randomness in the crack geometry, defect
geometry, fatigue parameters and external loads. The response sensitivity of each primary random
variable at the design point is also determined to show its role in the fatigue failure. The results
show that the initial crack length is a critical design parameter. Since crack lengths below the
threshold of an inspection limit are likely to exhibit a large amount of scatter, this makes it imperative
that the life expectancy of a strycture be treated from a stochastic viewpoint.

Probabilistic analysis is becoming increasingly important for the safety and reliability of an
aging structure and for tailoring new advanced materials. Due to the complexity in charactrizing
material behavior, structural response, and failure mechanism, probabilistic mechanics problems are
computationally intensive and strain the resources of'currently available computers. Since many
sources of parallelism are inherent in probabilistic mechanics problems, it is evident that the
development of a parallel computing enviroment for probabilistic response analysis in the current
trend in stochastic computational mechanics.
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Table7-1. ProblemConstants:SingleEdge-CrackedBeamwith anAppliedLoad

Parameter Mean

Length (L) 10.0 in

Width ON) 5.0 in

Thickness (t) 1.0 in

Young's Modulus CE) 30,000.0 ksi

Poisson's Ratio (v)

Applied Load (P)

Crack Length (a)

Stress Intensity Factor (_i)

Fracture Toughness (W:ic)

0.30.0

10.0 kip

0.01 in

33.452 ksi q_

43.0 ksi q_

Standard Deviation Percent

0.0

0.0

0.0

3,000.0

0.0

1.0 kip

0.1 in

0.0 ksi q'_

0.0 ksi q'_

0.0

0.0

0.0

10.0

10.0

10.0

0.0

0.0
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Table 7-2. Numerical Performance in Brittle Fracture Reliability Analysis

Randomness

in

Force

Young's

Modulus

Crack Length

Combined

Variance

(kip2(in 3)

12.3248

9.94 %

0.003087

0.18 %

1.8273

3.83 %

12.5107

10.01%

Starting

Point

P=12.5 kip

E=30e3 ksi

a=l.4 in

P=12 kip

E=30e3 ks_

a=l.1 in

Number

Iterations

5

0

7.

Failure

Point

P=12.2 kip

i E=30e3 ksi

a=1.29 in

P=-12.1 kip

E=30e3 ksi

a=l.02 in

Reliability

Index
, n

2.173

2.911

2.079

Probability

of Failure

1.49 %

0.0 %

0.1801%

1.88 %
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Table 7-3. Problem Constants: Single Edge-Cracked Plate with a Distributed Load

Parameter Mean Standard Deviation Percent

Length (L)
Width (W)
Thickness (0

Young's Modulus (E)

Poisson's Ratio (v)

Applied Stress (x)

10.0 in
4.0 in
1.0 in

30,000.0 ksi

0.3

12.0 ksi

Initial Crack Length (al)

Final crack Length (af)

Fatigue Parameter (D)

Fatigue Parameter (n)

0.01 in

0.1in

1.0 x 101°

3.25

0.0
0.0
0.0
0.0

0.0

3.0 ksi

0.01 in

0.01 in

3.0 x 10 "1
l

0.08

0.0

0.0
0.0
0.0

0.0

25.0

100.0

10.0

30.0

2.5
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Table7-4. TheStatisticalParametersandDistributionsof InputRandomVariablesof
theExampleProblem

RandomParameters Mean Standarddeviation COV

ai (Uniform with tail) 0.5833x 10"2in 0.3584x 10.2in 61.4%

D (Log-normal) 0.3770x 10.9 0.1885x 101° 5.0%

n (Log-normal) 3.60 0.18 5.0%

"c(Normal) 11.0 ksi 1.1 ksi 10.0%

xc (Uniform) -0.25 in 0.14433 57.7%

Yc (Uniform) -0.4 in 0.05774 14.4%

rc (Uniform) 0.1375 in 0.03608 26.2%

Pi (Normal) 35.0 ksi 3.5 10.0%
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Figure Captions

Figure 7-1. A simple two degree of freedom spring-mass system.

Figure 7-2. Comparison of the Mean Displacement at node 1 using: a) probabilistic
finite element method; b) Hermite-Gauss quadrature; c) Monte Carlo simulation.

Figure 7-3. Comparison of variance of displacement at node 1 using: a) probabilistic
finite element method; b) Hermite-Gauss quadrature; c) Monte Carlo simulation.

Figure 7-4.
method.

+ 3_ bounds of the displacement at node 1 using probabilistic finite element

Figure 7-5. Problem statement: single edge-cracked beam with an applied load.

Figure 7-6. Model for single edge-cracked plate with an applied load.

Figure 7-7a. Reliability index for the reference solution showing the effects of
uncertainty in the individual variables and their.combined effect.

Figure 7-7b. Reliability index for the PFEM solution showing the effects of uncertainty
in the individual variables and their combined effect.

Figure 8.
loading.

A multi-connected elastic body containing a finite crack under remote

Figure 9. A single edge-cracked plate with a random transformation inclusion

subjected to a distributed load.

Figure 10. The uniform with tail distribution for the initial crack length a i .

Figure 11. Comparison of CDF of the fatigue life T obtained by stochastic BIEM with
the results of MCS for the example problem.

Figure 12. Comparison of reliability index of two cases.

Figure 13. Comparison of response sensitivity at a i design points of two cases.

Figure 14. Comparison of the locus of a i at design points of two cases.
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